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Abstract
Reliable artificial synaptic devices are essential for the stable and fast training of artificial neural networks (ANNs). Specifi-
cally, synaptic devices should be robust during the training and testing of ANNs to embed them in the hyper-scale synaptic 
cores of neuromorphic computing architectures. In this study, a highly reliable artificial synaptic device based on a CuTe/
CuO/TiN-stacked conductive-bridge random-access memory cell having forming-free property was developed via embedding 
Au nanocrystals in the CuO resistive switching layer and TiN bottom electrode interface. Forming-free property was achieved 
by precisely designing the diameter of Au nanocrystals implementing the interface between the CuO resistive switching 
layer and TiN bottom electrode. In particular, this synaptic device exhibited multilevel current states when the compliance 
current level was varied. In addition, the synaptic device embedding Au nanocrystals (i.e., ~ 17.7 nm in diameter) showed 
a remarkable reduction of the variation in synaptic modulation. Furthermore, the test accuracy of image recognition via a 
deep neural network simulation was dramatically improved up to 91.95% using practical synaptic modulation data of the 
synaptic device embedding Au nanocrystals (i.e., ~ 17.7 nm in diameter).

Keywords  Conductive-bridge random-access-memory (CBRAM) · Synaptic device · Au nanocrystals · Synaptic variation · 
Deep neural networks

1  Introduction

Memristive devices such as resistive random access mem-
ory (ReRAM), phase-change random access memory 
(PCRAM), ferroelectric random access memory (FeRAM), 
and memtransistor are promising candidates for artificial 
synaptic devices with synaptic cores in advanced neuromor-
phic chips [1–14]. Among these, ReRAM is currently being 
actively researched as an artificial synaptic device because 
of its multilevel capability (> 11 bits) [15], high switching 
speed (< 100 ps) [16], high endurance (> 1012 cycles) [17], 
low power consumption (~ 1 mW), high scalability, and 
complementary metal–oxide–semiconductor (CMOS) com-
patibility [18]. ReRAM is generally categorized as valence 
change memory (VCM) with oxygen vacancy filaments and 

electrochemical metallization cells (ECM) with conductive 
metal filaments. In particular, ECM (or conductive-bridge 
random access memory (CBRAM)) cells have the advan-
tage of being able to operate at a lower voltage than VCM 
owing to the high mobility of metal ions in the oxide-based 
or chalcogenide-based resistive switching layer [19]. The 
CBRAM cell consists of a simple metal–insulator-metal 
(MIM) stack with an active top electrode layer (i.e., Cu, 
Ag, and CuTe), which is the source of a conductive metal 
filament, a resistive switching layer, and a bottom electrode 
(i.e., Pt and TiN). When a positive voltage is applied to the 
active top electrode layer, Cu or Ag in the active source 
layer are ionized (i.e., oxidized) such that diffusion and drift 
occur towards the bottom electrode due to the electric field. 
Subsequently, Cu or Ag ions are reduced by the supplied 
electrons at the bottom electrode, and Cu or Ag-based con-
ductive metal filaments are formed in the resistive switching 
layer. Thereby, CBRAM cells can perform bistable resist-
ance switching by electroforming and rupture dynamics of 
a conductive metal filament in the resistive switching layer 
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using redox processes (i.e., reduction and oxidation) [20, 
21].

However, CBRAM cells require an electroforming pro-
cess for continuous bistable resistive switching, which 
adversely affects the reliability of the device because it arti-
ficially causes the breakdown of the resistive switching layer 
in the beginning [22–27]. Thus, the reliability of CBRAM 
cells can be improved by achieving forming-free character-
istics. In addition, the electroforming process consumes high 
power and requires an additional circuit to generate a volt-
age higher than a set voltage [19]. Moreover, the variation 
in synaptic modulation would be drastically reduced when 
applied as an artificial synaptic device due to improvement 
in the reliability of the CBRAM cell. To date, various stud-
ies have been conducted to improve reliability by achieving 
forming-free characteristics in CBRAM cells [28–30]. How-
ever, studies presenting improved recognition performance 
by forming-free characteristics in neuromorphic applications 
(i.e., training and testing of deep neural networks (DNN)) 
have not been conducted.

In this study, we have designed a highly reliable artificial 
synaptic device based on a CBRAM cell having forming-
free characteristics with a TiN capping layer, CuTe active 
source layer, CuO resistive switching layer embedded 
with Au nanocrystals (NCs), and a TiN bottom electrode. 

Forming-free property was achieved by precisely controlling 
the diameter of the Au NCs embedded in the CuO resis-
tive switching layer. In addition, the variation in synaptic 
modulation (i.e., long-term potentiation (LTP) and long-term 
depression (LTD)) was dramatically improved from 20.61 
to 1.95%. Finally, a hardware-based DNN simulation with 
synaptic variations was performed to evaluate the accuracy 
of the image recognition task.

2 � Experiments and discussion

In general, in a resistive switching layer, conductive metal 
filaments are generated stochastically at randomly distrib-
uted hillocks on the bottom electrode by a strong electric 
field applied in the vertical direction [20, 21]. In other 
words, the stochastic nature of the formation of conductive 
metal filaments in a resistive switching layer is removed due 
to the intentionally generated hillock-like surface topogra-
phy. Thus, in this study, a resistive switching layer embedded 
with Au NCs was intentionally employed to modulate the 
surface topography of the TiN bottom electrode and achieve 
highly reliable synaptic modulation by obtaining forming-
free characteristics, as shown in Fig. 1a. The highly reli-
able CBRAM-based artificial synaptic device was designed 

Fig. 1   CuTe/CuO/TiN-stacked CBRAM cell embedded with Au NCs. 
a Design of the highly reliable CBRAM cell embedded with Au NCs 
between the CuO resistive switching layer and TiN bottom electrode, 

b device structure of the CBRAM cell, c–e top view SEM images of 
the Au thin films of thicknesses 1, 3, and 5 nm, respectively
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with a 20 nm thick TiN capping layer, a 100 nm thick CuTe 
active source layer, a 20 nm thick CuO resistive switching 
layer embedded with Au NCs, and a plug-type TiN bottom 
electrode of area 113 × 113 nm2, as shown in Fig. 1b. To 
embed Au NCs in the CuO resistive switching layer, an Au 
thin film was deposited on the TiN bottom electrode and 
post-deposition annealing (PDA) was conducted in a nitro-
gen atmosphere of 400 °C. Subsequently, the CuO resistive 
switching layer, CuTe active source layer, and TiN capping 
layer were sequentially sputtered on the Au NCs after a typi-
cal positive photolithography process with a patterning area 
of 60 × 60 μm2. Finally, the CBRAM cells were fabricated 
by a lift-off process using acetone, methanol, and deionized 
water. In particular, CuO material was used as the resis-
tive switching layer because Cu-based materials have high 
thermal stability, natural abundance, nontoxicity, and can be 
integrated with modern CMOS circuits [30]. To investigate 
the diameter of Au NCs, Au thin films of thickness 1, 3, and 
5 nm were evaporated on the TiN surface sputtered on the 
SiO2 substrate, and PDA was performed in a nitrogen atmos-
phere at 400 °C. From scanning electron microscopy (SEM) 
of the 1 nm thick Au thin film processed by PDA, the aver-
age diameter of Au NCs is observed to be ~ 4.8 nm, as shown 
in Fig. 1c, in which the scale bar size is 200 nm. In the 3- 
and 5-nm thick Au thin films processed by PDA, the average 
diameters of Au NCs are ~ 9.2 nm and ~ 17.7 nm, respec-
tively, as shown in Fig. 1d, e. It is inferred that the average 
diameter of the Au NCs increases with the thickness of the 
Au thin film. Thus, the average diameter of the Au NCs 
depends on the thickness of the Au thin film. In addition, 
unlike the Au NCs in the 1- and 3-nm thick Au thin films, the 
Au NCs in the 5 nm thick Au thin film appear to be island-
shaped on the TiN surface. These island-shaped Au NCs 
act as hillocks on the TiN bottom electrode and eliminate 
synaptic variations through forming-free characteristics. To 
further investigate the height of the Au NCs, four CBRAM 
devices were fabricated by varying the thickness of the Au 
thin film in the CuO resistive switching layer, and a cross-
sectional transmission electron microscopy (x-TEM) analy-
sis was conducted, as shown in Fig. 2. Unlike in Fig. 2a, the 
Au NCs in the 1-nm thick Au thin film are located between 
the CuO resistive switching layer and TiN bottom electrode 
contact (BEC), as shown in Fig. 2b. Here, the average height 
of the Au NCs is ~ 3.03 nm, as shown in the magnified inset 
of Fig. 2b. In the Au thin films of thickness 3 and 5 nm, the 
average heights of the Au NCs are ~ 5.78 nm and ~ 6.97 nm, 
respectively, as shown in the magnified insets of Fig. 2c, d. 
Similar to the trends of the average diameter, the average 
height of the Au NCs increases linearly with the thickness 
of the Au thin film. In addition, the electroforming voltage 
would be decreased with increasing height of the Au NCs 
and acts as a virtual electrode because of the strong electric 
field applied in the vertical direction.

To demonstrate the effect of the embedded Au NCs in 
the CuO resistive switching layer and TiN bottom elec-
trode interface, the electroforming process of the designed 
CBRAM-based artificial synaptic device was performed 
by applying DC voltage sweeps at the TiN capping layer. 
The TiN bottom electrode was grounded during the DC I-V 
measurements. When the DC voltage was scanned from 0 to 
5 V, the CBRAM cell without Au NCs was switched from a 
high-resistance state (HRS) to a low-resistance state (LRS) 
with a high electroforming voltage of 3.8 V, as indicated by 
the blue line in Fig. 3a. This result indicates that conductive 
Cu filaments were generated in the CuO resistive switch-
ing layer owing to the diffusion and drift of Cu ions by the 
applied electric field. In other words, an almost hard break-
down of the CuO resistive switching layer occurred during 
the electroforming process. This electroforming process 
with a high voltage amplitude can adversely affect the reli-
ability of the CBRAM cell. As the thickness of the Au thin 
film located at the interface of the CuO resistive switching 
layer and TiN bottom electrode increases from 1 to 5 nm at 
intervals of 2 nm, the electroforming voltage dramatically 
decreases from 2.2 to 0.3 V, as shown by the red, orange, 
and green curves in Fig. 3a. These results demonstrate that 
the Au NCs inserted at the interface of the CuO resistive 
switching layer and TiN bottom electrode can reduce the 
electroforming voltage from 3.8 to 0.3 V. In addition, we 
expect an improvement in the reliability of the synaptic mod-
ulation (i.e., LTP and LTD) in the designed CBRAM-based 
artificial synaptic device with a decrease in the amplitude 
of the electroforming voltage. After the electroforming pro-
cess, bistable resistive switching was conducted by double 
scanning the DC voltage from 0 to 2 V (i.e., the set region), 
and from 0 to − 1 V (i.e., the reset region), as shown in 
Fig. 3b. When the DC voltage was scanned from 0 to 2 V, 
the CBRAM cell without Au NCs changed from HRS to 
LRS at 0.76 V, as shown by the blue curve in Fig. 3b. For 
Au thin films of 1, 3, and 5 nm thickness, the CBRAM cells 
were switched from HRS to LRS at 0.70 V, 0.52 V, and 
0.30 V, respectively, as shown in the red, orange, and green 
curves in Fig. 3b. All CBRAM cells were changed from 
LRS to HRS by applying a negative voltage of − 1.2 V with 
typical negative differential resistance (NDR) phenomena 
at approximately − 0.1 V. As summarized in Fig. 3c, the 
forming voltage is decreased from 3.80 to 0.30 V and the set 
voltage is reduced from 0.76 to 0.30 V. However, the HRS 
current at 0.2 V is increased from 1.7 × 10–8 to 9.3 × 10–7 A 
as the diameter of the Au NCs increases. This tendency is 
associated with the strengthening of the electric field applied 
in the vertical direction because the enlarged Au NCs act 
as virtual electrodes. However, the CBRAM cell embedded 
with an Au thin film of 5-nm thickness having a set voltage 
of 0.3 V is the same as the electroforming voltage of 0.3 V, 
such that forming-free characteristics are achieved. Through 
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resistive switching measurements of the designed CBRAM 
cell, we demonstrated that forming-free characteristics can 
be achieved in the CBRAM cell by precisely controlling the 

size of the Au NCs in the CuO resistive switching layer and 
TiN bottom electrode interface.

Fig. 2   Cross-sectional TEM images of the designed CBRAM cells (a) without Au NCs, b 1 nm thick Au thin film, c 3 nm thick Au thin film, 
and d 5 nm thick Au thin film

Fig. 3   Electrical characteristics of the CBRAM cells without and 
with Au NCs. a Electroforming process of the CBRAM cells, b bi-
stable resistive switching of the CBRAM cells, c summarized elec-

troforming voltage, set voltage, and HRS currents depending on the 
thickness of the Au thin film
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Artificial synaptic devices require multilevel states to 
achieve high recognition accuracy for training and testing 
artificial neural networks (ANNs). Most CBRAM cells have 
multilevel states by control the degree of formation and rup-
ture of conductive metal filaments in the resistive switching 
layer. To investigate the multi-level states of the designed 
CBRAM cell with the Au thin film of thickness 5 nm, DC 
I-V measurements were conducted by varying the compli-
ance current level from 10–5 to 10–3 A, as shown in Fig. 4a. 
Typically, the LRS current level increases with the compli-
ance current level. Thus, by controlling the compliance cur-
rent level, our designed CBRAM cell with an Au thin film 
of 5 nm thickness could attain four level states (i.e., Ioff, Iint2, 
Iint1, and Ion). It may be noted that the applied reset voltage 
was − 1.2 V at all compliance current levels. Additionally, 
we performed an endurance test for the four-level states, as 
shown in Fig. 4b. The designed CBRAM cell embedded 
with Au NCs exhibited a high endurance of 105 cycles in 
multilevel states. The currents were read at 0.1 V. Further-
more, the CBRAM cell had a high retention time of 105 s 
for the multilevel states, as shown in Fig. 4c. The highly 
reliable electrical characteristics of the designed CBRAM 
cell embedded with Au NCs (i.e., Au thin film of 5 nm) are 
due to the forming-free characteristics achieved by precisely 
controlling the size of the Au NCs.

Based on these multilevel states in the DC I–V charac-
teristics, the LTP and LTD characteristics were evaluated 
during consecutive pulse operations, as shown in Fig. 5. 
As neuromorphic chips are typically trained and tested in 
pulse operations, the synaptic modulation of artificial syn-
aptic devices should be tested under consecutive stimulus 
conditions (i.e., voltage pulses), unlike DC I–V scanning. 
To measure the synaptic modulation of the CBRAM cell 
without Au NCs, 128 voltage pulses with an amplitude 
of 0.78 V for potentiation and 128 voltage pulses with an 
amplitude of − 0.20 V for depression were sequentially 

applied to the CBRAM cell for 20 cycles, as shown in 
Fig. 5a. The read voltage pulses of amplitude 0.20 V were 
applied between consecutive voltage pulses to output the 
conductance of the CBRAM cell without Au NCs. In 
addition, the widths of the voltage pulses for potentia-
tion, depression, and read operations were 5 ms, and the 
interval between consecutive voltage pulses was also 5 ms. 
Consequently, the synaptic modulation characteristics of 
the CBRAM cell without Au NCs presented a large vari-
ation under continuously applied voltage conditions. In 
practice, such a large variation in synaptic modulation is 
unsuitable for training and testing ANNs. However, the 
variation in synaptic modulation in the consecutive volt-
age pulse condition is drastically reduced with increasing 
thickness of the Au thin film in the case of the CBRAM 
cell embedded with Au thin films of thickness 1, 3, and 
5 nm in Fig. 5b–d. In particular, the synaptic modulation 
of the designed CBRAM cell with 5 nm thick Au thin film 
exhibits stable operation under consecutive stimulus con-
ditions. It may be noted that the amplitudes of the voltage 
pulses for potentiation in the CBRAM cells with Au thin 
films of thicknesses 1, 3, and 5 nm are 0.72 V, 0.55 V, 
and 0.32 V, respectively. In Fig. 5e–h, we mathematically 
calculated the synaptic variation of the maximum conduct-
ance values for 20 cycles in the CBRAM cells without 
Au NCs and with Au thin films of thicknesses 1, 3, and 
5 nm. In the CBRAM cell without Au NCs, the mean and 
standard deviation of the maximum conductance values 
are 5.24 ms and 1.08 ms, respectively, and the coefficient 
of variation is 20.61%, as shown in Fig. 5e. In addition, 
the mean and standard deviation of the maximum conduct-
ance values are 5.25 ms and 0.60 ms, respectively, and 
the coefficient of variation is 11.43% for the CBRAM cell 
with Au thin film of 1 nm thickness, as shown in Fig. 5f. 
Moreover, in the case of the CBRAM cells with Au thin 
films of 3 and 5 nm thicknesses, the mean values of the 

Fig. 4   Multilevel switching of the CBRAM cells with 5-nm thick Au thin film. a Multilevel switching of the designed CBRAM cell by varying 
the compliance current level, b write/erase endurance cycles, and c retention time for multilevel characteristics
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maximum conductance values are 4.96 ms and 5.14 ms, 
and the standard deviations of the maximum conduct-
ance values are 0.25 ms and 0.10 ms, respectively. Thus, 
the coefficient of variation for the CBRAM cell with Au 
thin film of 5 nm thickness is remarkably improved up to 
1.95%, as shown in Fig. 5h. These results imply that the 
highly improved variation in the LTP and LTD character-
istics of the designed CBRAM cell with Au thin film of 
5 nm thickness is achieved through forming-free charac-
teristics. Finally, we performed a hardware-based DNN 

simulation and evaluated the test accuracy of the image 
recognition depending on variations in synaptic modula-
tion, as shown in Fig. 5.

To perform a hardware-based DNN simulation using 
variations in synaptic modulation, a DNN with 784 input 
neurons, 128 hidden neurons, and 10 output neurons 
was designed, as shown in Fig. 6a. The designed DNN 
was trained using a modified handwritten image dataset 
from the National Institute of Standards and Technology 

Fig. 5   Synaptic modulation of the CBRAM cell without a Au NCs 
and embedded with Au thin film of thickness b 1 nm, c 3 nm, and d 
5  nm, respectively. Synaptic variations in the CBRAM cell without 

a Au NCs and embedded with Au thin films of thickness b 1 nm, c 
3 nm, and d 5 nm, respectively, represented by histograms
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(MNIST). The MNIST dataset consists of 60,000 image 
data for training and 10,000 image data for testing. Moreo-
ver, each handwritten image is a 28 × 28-pixel matrix with 
8-bit intensity (i.e., 0–255). In the training process, the 
MNIST image data with a 28 × 28-pixel matrix were con-
verted to a 784 × 1 vector using the flattening method and 
input to the designed DNN. Subsequently, the weighted 
summation process between the input and hidden layers 
was conducted using the input MNIST image data and 
the synaptic weights of the designed CBRAM cell with 
5-nm thick Au thin film. The weighted summation values 
were then input to the next layer of hidden neurons and 
converted to an activation signal using the rectified linear 
unit (ReLU) function of the hidden neurons. Subsequently, 
the weighted summation process between the hidden and 
output layers was again performed using the input activa-
tion signal and synaptic weights. The weighted summation 
values between the hidden and output layers were input to 
the next layer of output neurons, and the output signals 
were generated using the softmax function of the output 
neurons. The errors between the generated output signals 
and one-hot encoded targets (i.e., the labels of the training 
image dataset) were calculated as sign functions for train-
ing hardware-based DNN simulations. The backpropaga-
tion algorithm for training the hardware-based DNN was 
based on a previously reported study [31]. The discrete 
and limited conductance levels of the designed artificial 
synaptic device were used in the weight update process. 
Moreover, we applied variations in synaptic modulation 
in CBRAM cells without Au NCs and with Au thin films 
of thicknesses 1, 3, and 5 nm in the training process of the 
designed DNN. The variation in synaptic modulation in 
the hardware-based DNN was applied to the weight update 
process as follows [32].

Here, σ and μ denote the standard deviation and mean 
value of conductance, respectively. In the case of the 
CBRAM cell without Au NCs, the test accuracy for 10,000 
test images is less than ~ 40% over 60,000 iterations (i.e., 
60,000 training images), as shown in Fig. 6b. This test accu-
racy indicates that a CBRAM cell without Au NCs cannot 
be employed as an artificial synaptic device because of high 
variation in synaptic modulation. However, the final test 
accuracy is abruptly increased up to 91.95% when the thick-
ness of the Au thin film is increased from 1 to 5 nm. This 
result is due to the variation in synaptic modulation of the 
designed CBRAM cell, which is dramatically improved from 
20.61 to 1.95% by inserting Au NCs in the CuO resistive 
switching layer and TiN bottom electrode interface. Thus, 
the designed CBRAM cell embedded with an Au thin film of 
thickness 5 nm can be employed as a highly reliable artificial 
synaptic device to improve the online training and test accu-
racy of advanced neuromorphic computing architectures.

3 � Conclusion

In summary, a highly reliable CBRAM cell embedded 
with Au NCs with forming-free characteristics has been 
designed, and its applicability as an artificial synaptic device 
has been demonstrated. Forming-free characteristics could 
be achieved by precisely controlling the thickness of the 
inserted Au thin film in the CuO resistive switching layer 
and TiN bottom electrode. In addition, the CBRAM cell 
with Au thin film of 5-nm thickness exhibits multilevel 
current states depending on the compliance current level. 

ΔGreal = ΔGexpected × (1 + k)

(

k ≤ ±
�

�

)

0 10k 20k 30k 40k 50k 60k
0

20

40

60

80

100
 Au 5nm  Au 3nm
 Au 1nm  Au 0nm

Te
st

 a
cc

ur
ac

y 
[%

]

Iterations [#]

Input layer Hidden layer Output layer

I1

I2

I3

…

I784

H1

…

H128

H2

H3

O1

…

O10

O2

O3

(a) (b)

Fig. 6   Hardware-based DNN simulation. a Structure of the designed DNN, and b test accuracy for 10,000 MNIST hand-written images depend-
ing on the Au thin film in the designed CBRAM cells



	 D.-H. Park, J.-G. Park 

Vol.:(0123456789)1 3

In neuromorphic applications, the variation in synaptic 
modulation of the CBRAM cell with Au thin film of 5-nm 
thickness is remarkably reduced up to 1.95%. Finally, the 
test accuracy for 10,000 MNIST test images was drastically 
improved to 91.95% after 60,000 iterations. These findings 
can contribute to the development of highly reliable synaptic 
devices within the hyper-scale synaptic cores of neuromor-
phic chips.
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